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Abstract. Heritability analysis is an important research topic in brain
imaging genetics. Its primary motivation is to identify highly herita-
ble imaging quantitative traits (QTs) for subsequent in-depth imaging
genetic analyses. Most existing studies perform heritability analyses on
regional imaging QTs using predefined brain parcellation schemes such
as the AAL atlas. However, the power to dissect genetic underpinnings
under QTs defined in such an unsupervised fashion is largely deterio-
rate with inner partition noise and signal dilution. To bridge the gap, we
propose a new semi-parametric Bayesian heritability estimation model
to construct highly heritable imaging QTs. Our method leverages the
aggregate of genetic signals to imaging QT construction by develop-
ing a new brain parcellation driven by voxel-level heritability. To ensure
biological plausibility and clinical interpretability of the resulting brain
heritability parcellations, hierarchical sparsity and smoothness, coupled
with structural connectivity of the brain, are properly imposed on genetic
effects to induce spatial contiguity of heritable imaging QTs. Using the
ADNI imaging genetic data, we demonstrate the strength of our proposed
method, in comparison with the standard GCTA method, in identifying
highly heritable and biologically meaningful new imaging QTs.

Keywords: Imaging genetics · Heritability estimation · Bayesian
semi-parametric modeling

1 Introduction

Brain imaging genetics is an emerging and rapidly growing data science field that
arises with the recent advances in acquiring multimodal neuroimaging data and
high throughput genotyping and sequencing data [9,14,16,23]. To characterize
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genetic contributions on heritable neuroimaging quantitative traits (QTs), we
are able to gain new insights into the pathobiological mechanism from genetics
to brain structure and function, and their impact on behaviors and diseases.

The concept of heritability [19] has thus emerged under imaging genetics
paradigm to describe the proportion of the total imaging phenotypic variance
that is explained by the aggregated genetic effect captured by pedigree infor-
mation [17] or all the single nucleotide polymorphisms (SNPs) on a genotyping
array [24]. Under existing heritability studies, atlas-based brain parcellations like
automated anatomical labeling (AAL) [18] are routinely used to define imaging
traits based on certain imaging modality. However, within each region of interest
(ROI) defined under such an unsupervised brain parcellation, some areas may be
impacted marginally by SNPs, leading to a dilution of power to dissect genetic
contribution. Thus, there is an urgent need to construct a heritability map at
voxel level to accurately provide cartography for the truly heritable brain areas.

It is a challenging task to accurately construct a biological interpretable her-
itability map over whole brain voxel-wise neuroimaging measurements. Most
of the existing heritability modeling [5,22], including the widely used genome-
wide complex trait analysis (GCTA) [22], can only handle univariate pheno-
type without an efficient way to accommodate the phenotypic correlation. A few
recent attempts [6,10,25] start to explore heritability analysis for multivariate
or large-scale phenotypes especially given the highly correlated collections from
neuroimaging data. Those methods, though providing promising results under
their applications, are either unable to handle high-dimensional phenotypes like
the voxel-wise traits due to a direct inverse of the phenotypic covariance matrix,
or fail to incorporate biologically plausible assumptions like the smoothness over
brain topology for the heritability estimates.

In this paper, we propose a new Bayesian joint voxel-wise heritability analysis
to construct highly heritable imaging QTs based on the estimated heritability
map. From the analytical perspective, this requires an efficient and meaningful
variance component selection under high dimensional imaging responses. Despite
there is a broad literature on Bayesian sparsity and shrinkage, almost none of
them deals with the selection and estimation on the variance components. Under
neuroimaging studies with unique spatial correlation across voxels and struc-
tural/functional interactions among ROIs, we also need to properly consider the
underlying biological information, which otherwise will cause a power loss in
heritable traits detection and implausible interpretation.

To address all the above limitations and challenges, we propose a new semi-
parametric Bayesian heritability estimation model, and apply it to the imaging
genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [12,
15,20] to construct highly heritable and biologically meaningful imaging QTs.
Our major contributions are summarized as follows:

– We create a brain heritability map under a novel Bayesian integrative her-
itability analysis for high dimensional voxel-wise imaging phenotypes. We
jointly incorporate the brain connectivity information and spatial correlation
among voxels to enhance analytical power and biological interpretation.
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Fig. 1. The illustration of our proposed method Brain Heritability Mapping (BHM).

– We make the very first attempt to construct heritable imaging QTs with
stronger genetic dissection power by removing the constrain from the tradi-
tional unsupervised brain atlas for the QT definition. These new QTs will
provide a great potential to uncover in-depth genetic underpinnings.

– We demonstrate the effectiveness of our method in an empirical study to con-
struct heritable imaging QTs using the structural magnetic resonance imaging
(MRI) and genome-wide genotyping data from the ADNI cohort [12,15,20].
These novel imaging QTs are highly heritable in comparison with the herita-
ble AAL-based QTs discovered by the standard GCTA method.

2 Method

Our overarching goal is to construct more powerful neuroimaging endopheno-
types with strong genetic dissection power based on an innovative “brain heri-
tability map”. We propose a Bayesian semi-parametric model to jointly estimate
voxel-specific heritability over whole brain imaging traits. Within the Bayesian
paradigm, a hierarchical Ising-Spike-and-Slab prior is used to simultaneously
impose sparsity on heritabilities at 1) brain regions while accounting for corre-
lations induced by brain structural connectivity; 2) voxels while considering the
dependency among adjacent voxels. To enhance biological insight and reduce
parameter space, we further assign a Dirichlet process (DP) prior on the genetic
and environmental variance components, so that each of them are identical
within a contiguous brain area. Based on the result, a brain heritability map
can be constructed directly with the new imaging phenotype defined under the
“active” subregions; and the heritability for each of them is also estimated. Please
see Fig. 1 for the schematic design of our method.

Brain Heritability Mapping. To estimate the additive genetic heritability
for imaging traits {y(s)}S

s=1 over S voxels adjusting for clinical covariate X, we
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build the following mixed effect models

y(s) = Xβ(s) + g(s) + e(s), s = 1, . . . , S. (1)

At each voxel s, g(s) is the genetic random effect with g(s) ∼ N(0,Rτ2(s)), R
is the empirical genetic relationship matrix among subjects that is calculated
directly from the SNP data, and τ2(s) is the variance explained by the genetics.
The residual error e(s) ∼ N(0, Iσ2(s)) with σ2(s) denotes the variance explained
by the environmental effects. Based on the two variance components, the voxel-
specific heritability can be calculated by h(s) = τ2(s)

τ2(s)+σ2(s) for s = 1, . . . , S.
The assembly of {h(s)}S

s=1 will provide a genetics cartographic map over the
human brain. To impose a structural driven sparsity, we introduce a regional
binary indicate set δ = (δ1, . . . , δK) for the K ROIs and a voxel-level set γ =
(γ1, . . . , γS) to jointly distinguish brain locations with and without active genetic
impact. Based on them, we impose the following sparse group spike-and-slab
prior for each genetic variance τ2(s):

τ2(s) ∼ (1 − γ(s)δ(k))I0 + γ(s)δ(k)G, with voxel s belonging to region k, (2)

where I0 is a point mass at zero, and G is a probability function where the
nonzero component of τ2(s) samples from. It is straightforward to see τ2(s)
(and h(s)) is nonzero only if γ(s) = δ(k) = 1. Therefore, we can effectively
narrow down heritable brain traits by stochastically excluding the regions with
negligible genetic effect and only locate fine scale signals for the heritable regions.

To further induce a biologically plausible coupling of selection status in light
of brain connectivity and spatial correlation, we resort to the Ising model for
each of the indicator set

p(δ) ∝ Ising(δ, μ1, φ1,M1); p(γ) ∝ Ising(γ, μ2, φ2,M2) (3)

where graphs M1 and M2 summarize the region and voxel level structural infor-
mation, and μ1, μ2, φ1, φ2 are the sparsity and smoothness parameters. Under
hyper-prior (3), “connected” trait units have a higher possibility to be jointly
included or excluded from the model, aligning with the biological expectation.

Imaging Endophenotype and Heritability Estimation. In terms of the
environmental variance, we assume σ2(s) ∼ G′ with a prior probability function
G′. Under such a fine scale voxel-level imaging phenotypes, it is biologically
meaningful to assume the spatially contiguous voxels share similar heritability.
To impose such smoothness of {h(s)} over the identified contiguous hertiable
brain areas, we assume the joint distribution of G and G′ follows a nonparametric
DP prior with scalar parameter α

G,G′ ∼ DP(G0, α), G0 = Inverse Gamma × Inverse Gamma′, (4)

where G0 is the base measure defined by a joint of two independent Inverse
Gamma (IG) distributions. The nonparametric and discrete nature of (4) can



682 Y. Zhao et al.

be clearly seen under the following sticking-breaking representation [13]

G =
∞∑

k=1

πkIθk
; G′ =

∞∑

k=1

πkIθ′
k
; θk, θ′

k ∼ G0; (5)

with πk = π′
k

∏k−1
h=1(1 − π′

h) and π′
k ∼ Beta(1, α). This allows us to more

robustly accommodate the potential irregular distribution of variance compo-
nents, while inducing a clustering effect of {h(s)} with each contiguous area
sharing the identical heritability estimate. Meanwhile, given the estimation unit
of variance components moves from voxel to brain area, the risk of overfitting
could be dramatically reduced with much less unknown parameters, and facili-
tate a more accurate heritability mapping estimation with meaningful smooth-
ness effect.

Combing all the model specifications, we name our model Bayesian Heri-
tability Mapping (BHM) which is semi-parametric; and develop a Markov chain
Monte Carlo (MCMC) algorithm to conduct posterior inference. We rely on
Gibbs samplers with data augmentation to obtain posterior draws embedded
with a truncated stick-breaking process to approximate the DP representation.
The eventual heritability map is captured by the median probability model [2]
under the posterior inclusion probabilities of {δ} and {γ}. Simultaneously, we
could obtain the heritability of each identified imaging QTs using the posterior
median of {h(s)}. Given the defined QTs are the brain areas with active corre-
spondence with genetics, we anticipate higher heritabilities of them than those
under the traditional AAL defined regional imaging traits. Meanwhile, given the
sparse nature of our method, we also expect a number of unwarranted regional
heritable signals to be excluded from the result.

3 Experiments and Results

Data and Materials. The neuroimaging and genotypinig data used in this work
were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) [12,15,20]. The up-to-date information about the
ADNI is available at www.adni-info.org. The participants (N = 1, 472) include
341 cognitively normal (CN), 85 significant memory concern (SMC), 265 early
mild cognitive impairment (EMCI), 495 late MCI (LMCI), and 286 AD subjects
at the ADNI-GO/2 baseline. See Table 1 for characteristics of these participants.

Structural MRI scans were processed with voxel-based morphometry (VBM)
using the Statistical Parametric Mapping (SPM) software tool [1]. All scans were
aligned to a T1-weighted template image, segmented into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to the stan-
dard Montreal Neurological Institute (MNI) space as 2× 2 × 2 mm3 voxels. The
GM maps were extracted and smoothed with an 8mm FWHM kernel, and ana-
lyzed in this study. A total of 144,999 voxels, covering cortical, sub-cortical, and
cerebellar regions and measuring GM density, were studied in this work as voxel-
level imaging traits. Based on the AAL atlas [18], 116 ROI-level traits were also
obtained by averaging all the voxel-level measures within each ROI.

http://adni.loni.usc.edu/
www.adni-info.org
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Table 1. Participant characteristics. Age and sex are used as covariates in our study.

Diagnosis CN SMC EMCI LMCI AD Overall

Number 341 85 265 495 286 1472

Age (mean ± sd) 75.1 ± 5.4 72.4 ± 5.7 71.2 ± 7.1 73.9 ± 7.6 75.1 ± 8.0 73.9 ± 7.2

Sex (M/F) 182/159 36/49 147/118 306/189 162/124 833/639

Education(mean ± sd) 16.3 ± 2.6 16.7 ± 2.6 16.1 ± 2.6 16.0 ± 2.9 15.3 ± 3.0 16.0 ± 2.8

APOE ε4 present 24.9% 34.1% 36.2% 41.6% 46.5% 37.3%

For the genotyping data, we performed quality control using the following cri-
teria: genotyping call rate >95 %, minor allele frequency >5%, and Hardy Wein-
berg Equilibrium >1e−6. A total of 565,373 SNPs were used for estimating her-
itability. The structural connectivity computed from diffusion MRI (dMRI) was
used as connectivity information of the BHM model [8]. The preprocessed dMRI
data of 291 participants were obtained from the human connectome project
database, and the FSL software was used to construct the structural connectiv-
ity [21]. The distance-dependent consensus thresholding method was applied to
generate group-level connectivity and to avoid overestimating short-range con-
nections. This was used as the connectivity information in our analyses [3].

Implementation and Evaluation. We applied our proposed BHM model on
the VBM and genetics data adjusting for age, sex and the first ten genetic
principal components. The tuning parameters in the Ising priors were determined
by the auxiliary method [11], the shape and scale parameters in the Inverse
Gamma distributions were set to be 0.1 to provide non-informative support,
and we assigned α to be a noninformative Gamma distribution G(1, 1). We
started with multiple chains with 10,000 iterations 5000 burn-in under random
initials (Matlab2020b implementation, 2.4 GHz CPU, 64 GB Memory, Windows
System). Each run took ∼6 h to finish, and both trace plots and GR method
[7] were used to confirm the posterior convergence. We also implemented the
GCTA model to calculate the marginal heritability of the AAL-based regional
QTs using their provided pipeline in PLINK format. Eventually, we summarized
the heritability for each ROI, our defined QT within the corresponding ROI, and
the size in voxels of each heritable sub-region (Table 2).

ADNI Results. Table 2 shows the heritability estimation results of comparing
the proposed BHM model and the traditional GCTA model, including 47 BHM-
identified ROIs. For most of these ROIs, BHM was able to identify new imaging
QTs (i.e., the subregion of each ROI with size indicated by NVoxels) with higher
heritability than the GCTA-estimated heritability for the entire ROI based aver-
age measure. For instance, the BHM heritability estimates in bilateral superior
frontal gyri (0.532, 0.409) are higher than GCTA results (0.124, 0.119). BHM
also successfully captured working memory related regions better than GCTA,
and these regions were known to be significantly heritable, including inferior,
middle, and superior frontal gyri [4]. All these observations demonstrate the
promise of the BHM method in identifying new highly heritable imaging QTs,
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Table 2. Performance comparison. The GCTA column includes the heritability of the
average VBM measure in the ROI estimated by the conventional GCTA method. The
BHM column includes the BHM-estimated heritability of the identified imaging QT
(i.e., the subregion of each ROI with size indicated by NVoxels).

Region Left hemisphere Right hemisphere

GCTA BHM NVoxels GCTA BHM NVoxels

Precentral 0.063 0.443 281

Frontal Sup 0.124 0.532 352 0.119 0.409 429

Frontal Sup Orb 0.031 0.533 82 0.000 0.507 42

Frontal Mid 0.109 0.321 331 0.003 0.446 259

Frontal Inf Oper 0.210 0.403 148 0.098 0.539 174

Frontal Inf Tri 0.014 0.390 194 0.223 0.452 564

Frontal Inf Orb 0.261 0.613 118

Rolandic Oper 0.333 0.442 75

Frontal Sup Medial 0.311 0.323 264 0.265 0.421 227

Rectus 0.184 0.400 32 0.154 0.321 55

Cingulum Ant 0.328 0.473 113

Cingulum Mid 0.470 0.353 108

Cingulum Post 0.398 0.678 55

ParaHippocampal 0.240 0.487 41

Occipital Inf 0.244 0.343 35

Postcentral 0.090 0.485 289 0.123 0.226 235

Parietal Inf 0.336 0.554 66

SupraMarginal 0.172 0.428 62

Angular 0.028 0.391 56

Caudate 1.000 0.433 117 1.000 0.509 273

Putamen 0.000 0.288 312 0.000 0.377 356

Pallidum 0.068 0.419 75

Thalamus 0.720 0.445 446 0.613 0.391 324

Temporal Pole Sup 0.196 0.324 80 0.257 0.424 330

Temporal Mid 0.091 0.340 123 0.085 0.478 298

Temporal Pole Mid 0.052 0.288 203 0.026 0.482 228

Temporal Inf 0.000 0.323 101

Cerebelum 8 0.322 0.450 409 0.456 0.369 150

Cerebelum 9 0.000 0.265 283 0.111 0.382 121

Cerebelum 10 0.285 0.132 58

which can be used for subsequent in-depth brain imaging genetic analysis. Of
note, some identified ROIs are relatively small and warrant replication in inde-
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Fig. 2. Heritability maps estimated by (a) the conventional GCTA method and (b) the
proposed BHM method. In the GCTA map, the entire ROI is painted with the esti-
mated heritability. In the BHM map, only the identified voxels forming new heritable
imaging QTs are painted with the estimated heritability.

Table 3. Simulation results under BHM, GCTA and MEGHA: RMSE for heritability
estimation and AUC for heritability mapping. The Monte Carlo standard deviation is
included in the parentheses.

Scenario Method IG(5, 10) IG(0.5, 1)

RMSE AUC RMSE AUC

DP GCTA 0.021 (6.211e−04) 0.966 0.043 (2.216e−05) 0.886

MEGHA 0.013 (5.788e−05) 0.988 0.044 (6.824e−05) 0.960

BHM 0.002 (3.578e−05) 0.999 0.002 (1.213e−04) 0.992

IG GCTA 0.018 (3.431e−05) 0.914 0.032 (8.343e−05) 0.784

MEGHA 0.005 (8.102e−06) 0.908 0.026 (3.877e−05) 0.792

BHM 0.004 (8.354e−05) 0.995 0.004 (1.088e−04) 0.897

pendent cohorts. In addition, the GCTA method also identified some heritable
traits that are worth detailed imaging genetic analysis.

Figure 2 shows the heritability maps estimated by (a) the conventional GCTA
method and (b) the proposed BHM method. GCTA estimates the heritability
of the average voxel measure of each ROI. Given that the AAL ROIs are quite
large, the map looks nonsparse. However, the map covers part of the white
matter region. This appears counter-intuitive, since VBM only measures gray
matter density. In contrast, the BHM map identifies heritable voxels only in gray
matter region, which appears to be biologically more precise and meaningful.

Simulation Results. We also perform simulations to evaluate the perform
of BHM model compared with GCTA and massively expedited genome-wide
heritability analysis (MEGHA) [5] in heritability mapping and estimation. We
consider phenotypes measured over a 100×100 square with 10,000 voxels which is
partitioned into 16 equally sized squared regions. Across the regions, we generate
a scale-free connectivity network as prior information. We consider two scenarios
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to generate environmental variance σ2–Scenario 1 is to generate σ2 based on a
DP prior with base measure IG(0.5, 1), which fits our model assumption (see also
Eq. (4)); Scenario 2 is to generate σ2 directly from IG(0.5, 1). As for the genetic
variance τ2, we first set four pieces of significantly heritable areas lying over
two regions including around 100 voxels, and then for the active signal index
set R, we generate τ2(R) ∼ IG(5, 10) or τ2(R) ∼ IG(0.5, 1) for two variance
cases. For each of these simulated settings, we generate 100 MC datasets. The
implementation of BHM and GCTA directly follows the ADNI study, and we
use the publicly available pipeline for MEGHA with 10,000 permutation. We
evaluate the heritability mapping performance by Area under Curve (AUC) for
identifying the heritable voxels, and the heritability estimation by root-mean-
square error (RMSE) for h(s). All the results are summarized in Table 3.

In general, the proposed BHM model considerably outperforms GCTA and
MEGHA in all the simulated settings for both heritability mapping and esti-
mation. A higher variance in σ2 expectedly deteriorates the model performance
for all the methods. In addition, when the model assumption for BHM is not
satisfied, we see minor decrease of AUC and increase of RMSE based on the
proposed method, indicating the robustness of our approach.

4 Conclusion

We have proposed a new semi-parametric Bayesian heritability estimation model
to construct highly heritable and biologically meaningful imaging quantitative
traits (QTs). Our method leverages the aggregate of genetic signals to imaging
QT construction by developing a new brain parcellation driven by voxel-level
heritability. To ensure biological plausibility and clinical interpretablity of the
resulting brain heritability parcellations, hierarchical sparsity and smoothness,
coupled with structural connectivity of the brain, have been properly imposed on
genetic effects to induce spatial contiguity of heritable imaging QTs. Using the
ADNI imaging genetic data, we have demonstrated the strength of our proposed
method, in comparison with the standard GCTA method, in identifying highly
heritable and biologically meaningful new imaging QTs.
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